Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aircraft failures can result in the leakage of fuel, hydraulic oil, or other lubricants onto the runway during landing or taxiing. Damage to fuel tanks or oil lines during hard landings or accidents can also contribute to these spills. Further, improper maintenance or operational errors may leave oil traces on the runway before take-off or after landing. Identifying oil spills in airport runway videos is crucial to flight safety and accident investigation. Advanced image processing techniques can overcome the limitations of conventional RGB-based detection, which struggles to differentiate between oil spills and sewage due to similar coloration; given that oil and sewage have distinct spectral absorption patterns, precise detection can be performed based on multispectral images. In this study, we developed a method for spectrally enhancing RGB images of oil spills on airport runways to generate HSI images, facilitating oil spill detection in conventional RGB imagery. To this end, we employed the MST++ spectral reconstruction network model to effectively reconstruct RGB images into multispectral images, yielding improved accuracy in oil detection compared with other models. Additionally, we utilized the Fast R-CNN oil spill detection model, resulting in a 5% increase in Intersection over Union (IOU) for HSI images. Moreover, compared with RGB images, this approach significantly enhanced detection accuracy and completeness by 25.3% and 26.5%, respectively. These findings clearly demonstrate the superior precision and accuracy of HSI images based on spectral reconstruction in oil spill detection compared with traditional RGB images. With the spectral reconstruction technique, we can effectively make use of the spectral information inherent in oil spills, thereby enhancing detection accuracy. Future research could delve deeper into optimization techniques and conduct extensive validation in real airport environments. In conclusion, this spectral reconstruction-based technique for detecting oil spills on airport runways offers a novel and efficient approach that upholds both efficacy and accuracy. Its wide-scale implementation in airport operations holds great potential for improving aviation safety and environmental protection.

Details

Title
Charge-Coupled Frequency Response Multispectral Inversion Network-Based Detection Method of Oil Contamination on Airport Runway
Author
Zhao, Shuanfeng 1   VIAFID ORCID Logo  ; Luo, Zhijian 1 ; Wang, Li 1 ; Li, Xiaoyu 1 ; Xing, Zhizhong 2   VIAFID ORCID Logo 

 College of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China; [email protected] (Z.L.); [email protected] (L.W.); [email protected] (X.L.) 
 School of Rehabilitation, Kunming Medical University, Kunming 650500, China; [email protected] 
First page
3716
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3072728488
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.