It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents a method for stereo visual odometry and mapping that integrates VINS-Fusion-based visual odometry estimation with deep learning techniques for camera pose tracking and stereo image matching. Traditional approaches in the VINS-Fusion relied on classical methods for feature extraction and matching, which often resulted in inaccuracies in triangulation-based 3D position estimation. These inaccuracies could be mitigated by incorporating IMU-based position estimation, which yielded more accurate odometry estimates compared to using stereo camera only in three-dimensional space. Consequently, the original VINS-stereo algorithm necessitated a tightly-coupled integration of IMU sensor measurements with estimated visual odometry.
To address these challenges, our work proposes replacing the traditional feature extraction method used in VINS-Fusion, the Shi-Tomasi (Good Features to Track) technique, with feature extraction via the SuperPoint deep network. This approach has demonstrated promising experimental results. Additionally, we have applied deep learning models to the matching of feature points that project the same three-dimensional point to pixel coordinates in different images. Instead of using the KLT optical flow algorithm previously employed by VINS-Fusion, our proposed method utilizes SuperGlue, a deep graph neural network for graph matching, to improve image tracking and stereo image matching performance. The performance of the proposed algorithm is evaluated using the publicly available EuRoC dataset, providing a comparison with existing algorithms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer