Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In an era marked by the escalating architectural complexity of the Internet, network intrusion detection stands as a pivotal element in cybersecurity. This paper introduces Learn-IDS, an innovative framework crafted to bridge existing gaps between datasets and the training process within deep learning (DL) models for Network Intrusion Detection Systems (NIDS). To elevate conventional DL-based NIDS methods, which are frequently challenged by the evolving cyber threat landscape and exhibit limited generalizability across various environments, Learn-IDS works as a potent and adaptable platform and effectively tackles the challenges associated with datasets used in deep learning model training. Learn-IDS takes advantage of the raw data to address three challenges of existing published datasets, which are (1) the provided tabular format is not suitable for the diversity of DL models; (2) the fixed traffic instances are not suitable for the dynamic network scenarios; (3) the isolated published datasets cannot meet the cross-dataset requirement of DL-based NIDS studies. The data processing results illustrate that the proposed framework can correctly process and label the raw data with an average of 90% accuracy across three published datasets. To demonstrate how to use Learn-IDS for a DL-based NIDS study, we present two simple case studies. The case study on cross-dataset sampling function reports an average of 30.3% OOD accuracy improvement. The case study on data formatting function shows that introducing temporal information can enhance the detection accuracy by 4.1%.The experimental results illustrate that the proposed framework, through the synergistic fusion of datasets and DL models, not only enhances detection precision but also dynamically adapts to emerging threats within complex scenarios.

Details

Title
Learn-IDS: Bridging Gaps between Datasets and Learning-Based Network Intrusion Detection
Author
Wang, Minxiao 1   VIAFID ORCID Logo  ; Yang, Ning 2   VIAFID ORCID Logo  ; Guo, Yanhui 3   VIAFID ORCID Logo  ; Weng, Ning 1   VIAFID ORCID Logo 

 The Computer Engineering Program in the School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA; [email protected] 
 The Information Technology Program in the School of Computing, Southern Illinois University, Carbondale, IL 62901, USA 
 Department of Computer Science, University of Illinois, Springfield, IL 62703, USA; [email protected] 
First page
1072
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2999181096
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.