Content area

Abstract

Text-to-image (T2I) generation using diffusion models has become a blockbuster service in today's AI cloud. A production T2I service typically involves a serving workflow where a base diffusion model is augmented with various "add-on" modules, notably ControlNet and LoRA, to enhance image generation control. Compared to serving the base model alone, these add-on modules introduce significant loading and computational overhead, resulting in increased latency. In this paper, we present SwiftDiffusion, a system that efficiently serves a T2I workflow through a holistic approach. SwiftDiffusion decouples ControNet from the base model and deploys it as a separate, independently scaled service on dedicated GPUs, enabling ControlNet caching, parallelization, and sharing. To mitigate the high loading overhead of LoRA serving, SwiftDiffusion employs a bounded asynchronous LoRA loading (BAL) technique, allowing LoRA loading to overlap with the initial base model execution by up to k steps without compromising image quality. Furthermore, SwiftDiffusion optimizes base model execution with a novel latent parallelism technique. Collectively, these designs enable SwiftDiffusion to outperform the state-of-the-art T2I serving systems, achieving up to 7.8x latency reduction and 1.6x throughput improvement in serving SDXL models on H800 GPUs, without sacrificing image quality.

Details

1009240
Title
SwiftDiffusion: Efficient Diffusion Model Serving with Add-on Modules
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 6, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-09
Milestone dates
2024-07-02 (Submission v1); 2024-12-06 (Submission v2)
Publication history
 
 
   First posting date
09 Dec 2024
ProQuest document ID
3075441898
Document URL
https://www.proquest.com/working-papers/swiftdiffusion-efficient-diffusion-model-serving/docview/3075441898/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-10
Database
ProQuest One Academic