Abstract

Because of their large surface areas, nanotubes and nanowires demonstrate exquisite mechanical coupling to their surroundings, promising advanced sensors and nanomechanical devices. However, this environmental sensitivity has resulted in several ambiguous observations of vibrational coupling across various experiments. Herein, we demonstrate a temperature-dependent Radial Breathing Mode (RBM) frequency in free-standing, electron-diffraction-assigned Double-Walled Carbon Nanotubes (DWNTs) that shows an unexpected and thermally reversible frequency downshift of 10 to 15%, for systems isolated in vacuum. An analysis based on a harmonic oscillator model assigns the distinctive frequency cusp, produced over 93 scans of 3 distinct DWNTs, along with the hyperbolic trajectory, to a reversible increase in damping from graphitic ribbons on the exterior surface. Strain-dependent coupling from self-tensioned, suspended DWNTs maintains the ratio of spring-to-damping frequencies, producing a stable saturation of RBM in the low-tension limit. In contrast, when the interior of DWNTs is subjected to a water-filling process, the RBM thermal trajectory is altered to that of a Langmuir isobar and elliptical trajectories, allowing measurement of the enthalpy of confined fluid phase change. These mechanisms and quantitative theory provide new insights into the environmental coupling of nanomechanical systems and the implications for devices and nanofluidic conduits.

Nanotubes exhibit high vibrational coupling to the environment but lack a theoretical description. Vacuum-isolated, suspended double walled nanotubes provide a damping model for mass coupling, offering new nanomechanics and nanofluidics insights.

Details

Title
Environmental damping and vibrational coupling of confined fluids within isolated carbon nanotubes
Author
Tu, Yu-Ming 1   VIAFID ORCID Logo  ; Kuehne, Matthias 2   VIAFID ORCID Logo  ; Misra, Rahul Prasanna 1   VIAFID ORCID Logo  ; Ritt, Cody L. 1 ; Oliaei, Hananeh 3   VIAFID ORCID Logo  ; Faucher, Samuel 1 ; Li, Haokun 4 ; Xu, Xintong 4   VIAFID ORCID Logo  ; Penn, Aubrey 5 ; Yang, Sungyun 1   VIAFID ORCID Logo  ; Yang, Jing Fan 1   VIAFID ORCID Logo  ; Sendgikoski, Kyle 6 ; Chakraverty, Joshika 1 ; Cumings, John 7   VIAFID ORCID Logo  ; Majumdar, Arun 8 ; Aluru, Narayana R. 9   VIAFID ORCID Logo  ; Hachtel, Jordan A. 10   VIAFID ORCID Logo  ; Blankschtein, Daniel 1   VIAFID ORCID Logo  ; Strano, Michael S. 1   VIAFID ORCID Logo 

 Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 Massachusetts Institute of Technology, Department of Chemical Engineering, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); Brown University, Department of Physics, Providence, USA (GRID:grid.40263.33) (ISNI:0000 0004 1936 9094) 
 University of Illinois Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991) 
 Stanford University, Department of Mechanical Engineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000 0004 1936 8956) 
 Massachusetts Institute of Technology, MIT.nano, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 University of Maryland, Department of Physics, College Park, USA (GRID:grid.164295.d) (ISNI:0000 0001 0941 7177) 
 University of Maryland, Department of Materials Science and Engineering, College Park, USA (GRID:grid.164295.d) (ISNI:0000 0001 0941 7177) 
 Stanford University, Department of Mechanical Engineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000 0004 1936 8956); Stanford Precourt Institute for Energy, Stanford, USA (GRID:grid.168010.e) 
 University of Texas at Austin, Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, Austin, USA (GRID:grid.89336.37) (ISNI:0000 0004 1936 9924) 
10  Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
Pages
5605
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3075494980
Copyright
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.