Abstract

Facioscapulohumeral muscular dystrophy (FSHD) affects roughly 1 in 7500 individuals. While at the population level there is a general pattern of affected muscles, there is substantial heterogeneity in muscle expression across- and within-patients. There can also be substantial variation in the pattern of fat and water signal intensity within a single muscle. While quantifying individual muscles across their full length using magnetic resonance imaging (MRI) represents the optimal approach to follow disease progression and evaluate therapeutic response, the ability to automate this process has been limited. The goal of this work was to develop and optimize an artificial intelligence-based image segmentation approach to comprehensively measure muscle volume, fat fraction, fat fraction distribution, and elevated short-tau inversion recovery signal in the musculature of patients with FSHD. Intra-rater, inter-rater, and scan-rescan analyses demonstrated that the developed methods are robust and precise. Representative cases and derived metrics of volume, cross-sectional area, and 3D pixel-maps demonstrate unique intramuscular patterns of disease. Future work focuses on leveraging these AI methods to include upper body output and aggregating individual muscle data across studies to determine best-fit models for characterizing progression and monitoring therapeutic modulation of MRI biomarkers.

Details

Title
AI driven analysis of MRI to measure health and disease progression in FSHD
Author
Riem, Lara 1 ; DuCharme, Olivia 1 ; Cousins, Matthew 1 ; Feng, Xue 1 ; Kenney, Allison 1 ; Morris, Jacob 1 ; Tapscott, Stephen J. 2 ; Tawil, Rabi 3 ; Statland, Jeff 4 ; Shaw, Dennis 5 ; Wang, Leo 6 ; Walker, Michaela 4 ; Lewis, Leann 3 ; Jacobs, Michael A. 7 ; Leung, Doris G. 8 ; Friedman, Seth D. 9 ; Blemker, Silvia S. 10 

 Springbok Analytics, Charlottesville, USA 
 Fred Hutchinson Cancer Center, Seattle, USA (GRID:grid.270240.3) (ISNI:0000 0001 2180 1622) 
 University of Rochester Medical Center, Rochester, USA (GRID:grid.412750.5) (ISNI:0000 0004 1936 9166) 
 University of Kansas Medical Center, Kansas City, USA (GRID:grid.412016.0) (ISNI:0000 0001 2177 6375) 
 Seattle Children’s Hospital, Seattle, USA (GRID:grid.240741.4) (ISNI:0000 0000 9026 4165); University of Washington, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657) 
 University of Washington, Seattle, USA (GRID:grid.34477.33) (ISNI:0000 0001 2298 6657) 
 University of Texas Health Science Center at Houston (UTHealth Houston), Houston, USA (GRID:grid.267308.8) (ISNI:0000 0000 9206 2401); Johns Hopkins University School of Medicine, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311); Rice University, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278) 
 Kennedy Krieger Institute, Baltimore, USA (GRID:grid.240023.7) (ISNI:0000 0004 0427 667X); Johns Hopkins University School of Medicine, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
 Seattle Children’s Hospital, Seattle, USA (GRID:grid.240741.4) (ISNI:0000 0000 9026 4165) 
10  Springbok Analytics, Charlottesville, USA (GRID:grid.240741.4); University of Virginia, Charlottesville, USA (GRID:grid.27755.32) (ISNI:0000 0000 9136 933X) 
Pages
15462
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3075790233
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.