Full Text

Turn on search term navigation

© 2024 Xia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In March 2020, the outbreak of COVID-19 precipitated one of the most significant stock market downturns in recent history. This paper explores the relationship between public sentiment related to COVID-19 and stock market fluctuations during the different phases of the pandemic. Utilizing natural language processing and sentiment analysis, we examine Twitter data for pandemic-related keywords to assess whether these sentiments can predict changes in stock market trends. Our analysis extends to additional datasets: one annotated by market experts to integrate professional financial sentiment with market dynamics, and another comprising long-term social media sentiment data to observe changes in public sentiment from the pandemic phase to the endemic phase. Our findings indicate a strong correlation between the sentiments expressed on social media and market volatility, particularly sentiments directly associated with stocks. These insights validate the effectiveness of our Sentiment(S)-LSTM model, which helps to understand the evolving dynamics between public sentiment and stock market trends from 2020 through 2023, as the situation shifts from pandemic to endemic and approaches new normalcy.

Details

Title
Mining the relationship between COVID-19 sentiment and market performance
Author
Xia, Ziyuan  VIAFID ORCID Logo  ; Chen, Jeffrey; Sun, Anchen  VIAFID ORCID Logo 
First page
e0306520
Section
Research Article
Publication year
2024
Publication date
Jul 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3076243289
Copyright
© 2024 Xia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.