It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Due to the spectrum and complexity efficiency, the integrated radar and communications (RadCom) systems have been widely favored, in which orthogonal frequency division multiplexing (OFDM) is the most popular signal to conduct the two functions simultaneously. However, an unoptimized pulse could suffer from severe inter-carrier interference (ICI) and high out-of-band emission (OOBE), which greatly degrades the system performance. In this paper, we introduce the pulse shaping scheme dedicated to RadCom systems, in which both transmitter and receiver can adaptively design pulses with the assistance of radar estimation. We first optimize the transmitting pulse with the weighted sum of signal-to-interference-plus-noise ratio (SINR) and OOBE by employing the popular genetic algorithm. Then, we design an improved-matched pulse at the receiver for maximizing the SINR with the fmincon solver. In this way, they both utilize the readily available radar information and keep the pulse optimal even in highly dynamic scenarios, which makes the most of RadCom systems while avoiding the overhead of channel estimation and feedback. Simulations prove the feasibility of proposed scheme and reveal that the radar image and communications SINR stay close to their optimum in most cases with much lower OOBE. An improved-matched pulse can further improve the communications performance when severe ICI occurs compared with a matched pulse.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Harbin Institute of Technology, School of Electronics and Information Engineering, Shenzhen, China (GRID:grid.19373.3f) (ISNI:0000 0001 0193 3564)
2 Harbin Institute of Technology, School of Electronics and Information Engineering, Shenzhen, China (GRID:grid.19373.3f) (ISNI:0000 0001 0193 3564); Shenzhen Peng Cheng Laboratory (PCL), Shenzhen, China (GRID:grid.508161.b)