Abstract

This review highlights the rheological and phase proportions variation induced by cooling events from superliquidus temperature (melt) to subliquidus temperatures. It provides a comprehensive view of the rheological response of magmatic systems undergoing dynamic cooling and shear deformation. The two main parameters which are of importance to model the rheological properties of such crystallizing systems and which are simultaneously poorly investigated so far are crystallization and strain rates. The response to relatively high deformation rates results in shear thinning behavior in partly crystallized systems under variable shear rate and it should be considered in magmatic processes. Due to the sluggish crystallization of SiO\(_{2}\)-rich melts, data are mainly available for mafic systems, which does not allow a general reappraisal. An attempt to model available literature data for less evolved systems in dynamic scenarios and a comparison with MELTS algorithm approach (thermodynamic equilibrium conditions) is provided. Since there are difficulties in comparing experimental data gained using different methodologies, we focus mainly on data obtained with the concentric cylinder technique. This highlights the fact that a general experimental protocol is needed in order to compare and model viscosity data to predict the dynamic rheological evolution for volcanic rocks.

Details

Title
Rheological changes in melts and magmas induced by crystallization and strain rate
Author
Vetere, Francesco  VIAFID ORCID Logo  ; Iezzi, Gianluca  VIAFID ORCID Logo  ; Perugini, Diego  VIAFID ORCID Logo  ; Holtz, Francois  VIAFID ORCID Logo 
Pages
227-248
Publication year
2022
Publication date
2022
Publisher
Académie des Sciences. Institut de France
ISSN
16310713
e-ISSN
17787025
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3077909840
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode.fr (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.