Content area

Abstract

Atomic-scale simulations have progressed tremendously over the past decade, largely due to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques, thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler-Parinello, DeePMD and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities.

Details

1009240
Identifier / keyword
Title
i-PI 3.0: a flexible and efficient framework for advanced atomistic simulations
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Jul 10, 2024
Section
Condensed Matter; Physics (Other)
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-10-29
Milestone dates
2024-05-24 (Submission v1); 2024-07-10 (Submission v2)
Publication history
 
 
   First posting date
29 Oct 2024
ProQuest document ID
3078791340
Document URL
https://www.proquest.com/working-papers/i-pi-3-0-flexible-efficient-framework-advanced/docview/3078791340/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-10-30
Database
ProQuest One Academic