Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electrospun drug-eluting fibers have demonstrated potentials in topical drug delivery applications, where drug releases can be modulated by polymer fiber compositions. In this study, blend fibers of polycaprolactone (PCL) and polyethylene oxide (PEO) at various compositions were electrospun from 10 wt% of polymer solutions to encapsulate a model drug of ibuprofen (IBP). The results showed that the average polymer solution viscosities determined the electrospinning parameters and the resulting average fiber diameters. Increasing PEO contents in the blend PCL/PEO fibers decreased the average elastic moduli, the average tensile strength, and the average fracture strains, where IBP exhibited a plasticizing effect in the blend PCL/PEO fibers. Increasing PEO contents in the blend PCL/PEO fibers promoted the surface wettability of the fibers. The in vitro release of IBP suggested a transition from a gradual release to a fast release when increasing PEO contents in the blend PCL/PEO fibers up to 120 min. The in vitro viability of blend PCL/PEO fibers using MTT assays showed that the fibers were compatible with MEF-3T3 fibroblasts. In conclusion, our results explained the scientific correlations between the solution properties and the physicomechanical properties of electrospun fibers. These blend PCL/PEO fibers, having the ability to modulate IBP release, are suitable for topical drug delivery applications.

Details

Title
Electrospun Ibuprofen-Loaded Blend PCL/PEO Fibers for Topical Drug Delivery Applications
Author
Diala Bani Mustafa 1 ; Sakai, Tsuyoshi 2 ; Sato, Osamu 2   VIAFID ORCID Logo  ; Ikebe, Mitsuo 2 ; Shih-Feng, Chou 1 

 Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA; [email protected] 
 Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA; [email protected] (T.S.); [email protected] (O.S.); [email protected] (M.I.) 
First page
1934
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079098164
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.