Abstract

Background

Linkage errors that occur according to linkage levels can adversely affect the accuracy and reliability of analysis results. This study aimed to identify the differences in results according to personally identifiable information linkage level, sample size, and analysis methods through empirical analysis.

Methods

The difference between the results of linkage in directly identifiable information (DII) and indirectly identifiable information (III) linkage levels was set as III linkage based on name, date of birth, and sex and DII linkage based on resident registration number. The datasets linked at each level were named as databaseIII (DBIII) and databaseDII (DBDII), respectively. Considering the analysis results of the DII-linked dataset as the gold standard, descriptive statistics, group comparison, incidence estimation, treatment effect, and moderation effect analysis results were assessed.

Results

The linkage rates for DBDII and DBIII were 71.1% and 99.7%, respectively. Regarding descriptive statistics and group comparison analysis, the difference in effect in most cases was “none” to “very little.” With respect to cervical cancer that had a relatively small sample size, analysis of DBIII resulted in an underestimation of the incidence in the control group and an overestimation of the incidence in the treatment group (hazard ratio [HR] = 2.62 [95% confidence interval (CI): 1.63–4.23] in DBIII vs. 1.80 [95% CI: 1.18–2.73] in DBDII). Regarding prostate cancer, there was a conflicting tendency with the treatment effect being over or underestimated according to the surveillance, epidemiology, and end results summary staging (HR = 2.27 [95% CI: 1.91–2.70] in DBIII vs. 1.92 [95% CI: 1.70–2.17] in DBDII for the localized stage; HR = 1.80 [95% CI: 1.37–2.36] in DBIII vs. 2.05 [95% CI: 1.67–2.52] in DBDII for the regional stage).

Conclusions

To prevent distortion of the analyses results in health and medical research, it is important to check that the patient population and sample size by each factor of interest (FOI) are sufficient when different data are linked using DBDII. In cases involving a rare disease or with a small sample size for FOI, there is a high likelihood that a DII linkage is unavoidable.

Details

Title
Impact of linkage level on inferences from big data analyses in health and medical research: an empirical study
Author
Lee, Bora; Young-Kyun, Lee; Sung Han Kim; Oh, HyunJin; Won, Sungho; Suk-Yong, Jang; Ye Jin Jeon; Yoo, Bit-Na; Jean-Kyung Bak
Pages
1-11
Section
Research
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
14726947
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079155241
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.