Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The efficient and accurate identification of traffic signs is crucial to the safety and reliability of active driving assistance and driverless vehicles. However, the accurate detection of traffic signs under extreme cases remains challenging. Aiming at the problems of missing detection and false detection in traffic sign recognition in fog traffic scenes, this paper proposes a recognition algorithm for traffic signs based on pix2pixHD+YOLOv5-T. Firstly, the defogging model is generated by training the pix2pixHD network to meet the advanced visual task. Secondly, in order to better match the defogging algorithm with the target detection algorithm, the algorithm YOLOv5-Transformer is proposed by introducing a transformer module into the backbone of YOLOv5. Finally, the defogging algorithm pix2pixHD is combined with the improved YOLOv5 detection algorithm to complete the recognition of traffic signs in foggy environments. Comparative experiments proved that the traffic sign recognition algorithm proposed in this paper can effectively reduce the impact of a foggy environment on traffic sign recognition. Compared with the YOLOv5-T and YOLOv5 algorithms in moderate fog environments, the overall improvement of this algorithm is achieved. The precision of traffic sign recognition of the algorithm in the fog traffic scene reached 78.5%, the recall rate was 72.2%, and [email protected] was 82.8%.

Details

Title
Research on a Recognition Algorithm for Traffic Signs in Foggy Environments Based on Image Defogging and Transformer
Author
Liu, Zhaohui 1   VIAFID ORCID Logo  ; Yan, Jun 2 ; Zhang, Jinzhao 2 

 State Key Laboratory of Automotive Simulation and Control (ASCL), Changchun 130025, China; College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China; [email protected] (J.Y.); [email protected] (J.Z.) 
 College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China; [email protected] (J.Y.); [email protected] (J.Z.) 
First page
4370
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079222343
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.