Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Although atmospheric CO2 concentrations collected by satellites play a crucial role in understanding global greenhouse gases, the sparse geographic distribution greatly affects their widespread application. In this paper, a hybrid CNN and spatiotemporal Kriging (CNN-STK) model is proposed to generate a monthly spatiotemporal continuous XCO2 dataset over China at 0.25° grid-scale from 2015 to 2020, utilizing OCO-2 XCO2 and geographic covariates. The validations against observation samples, CAMS XCO2 and TCCON measurements indicate the CNN-STK model is effective, robust, and reliable with high accuracy (validation set metrics: R2 = 0.936, RMSE = 1.3 ppm, MAE = 0.946 ppm; compared with TCCON: R2 = 0.954, RMSE = 0.898 ppm and MAE = 0.741 ppm). The accuracy of CNN-STK XCO2 exhibits spatial inhomogeneity, with higher accuracy in northern China during spring, autumn, and winter and lower accuracy in northeast China during summer. XCO2 in low-value-clustering areas is notably influenced by biological activities. Moreover, relatively high uncertainties are observed in the Qinghai-Tibet Plateau and Sichuan Basin. This study innovatively integrates deep learning with the geostatistical method, providing a stable and cost-effective approach for other countries and regions to obtain regional scales of atmospheric CO2 concentrations, thereby supporting policy formulation and actions to address climate change.

Details

Title
Satellite-Based Reconstruction of Atmospheric CO2 Concentration over China Using a Hybrid CNN and Spatiotemporal Kriging Model
Author
Hua, Yiying; Zhao, Xuesheng  VIAFID ORCID Logo  ; Sun, Wenbin; Sun, Qiwen
First page
2433
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079275044
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.