Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To enhance the impact resistance of high-performance concrete (HPC), a novel efficient solution was adopted by incorporating basalt fibers (BF) and polypropylene fibers (PF) as reinforcement materials in this work. To this end, the effects of single BF (BHC) and PF (PHC) as well as their combinations (BPHPC) on the impact energy consumption, ductility ratio, and toughness factor were explored through drop weight impact test of concrete considering fiber volume contents (0.1%, 0.15%, 0.2%) to evaluate the impact resistance of the concrete. The Weibull distribution function model is used to fit the drop weight impact test results and predict the probability of failure. Moreover, the fracture-resistance enhancement mechanism of fiber is analyzed at a microscopic level. Test results showed that the number of impacts resisted by the HPC can follow well the two-parameter Weibull distribution. Compared with the single BF and single PF, the combination of 0.15% BF and 0.1% PF yields favorable impact resistance, thus exhibiting a positive hybrid effect.

Details

Title
Experimental Study on Impact Performance of Basalt-Polypropylene Fiber Reinforced High-Performance Concrete
Author
Zhang, Maoyu 1   VIAFID ORCID Logo  ; Li, Bo 2 ; Zheng, Zezhong 3 ; Zhang, Jicheng 3 

 School of Civil Engineering and Architecture, Taizhou University, Jiaojiang 318000, China; [email protected] 
 Department of Civil Engineering, Wenzhou University of Technology, Wenzhou 325035, China 
 School of Urban Construction, Yangtze University, Jingzhou 434023, China; [email protected] (Z.Z.); [email protected] (J.Z.) 
First page
3253
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3079345690
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.