It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Simulations of chemical reaction probabilities in gas surface dynamics require the calculation of ensemble averages over many tens of thousands of reaction events to predict dynamical observables that can be compared to experiments. At the same time, the energy landscapes need to be accurately mapped, as small errors in barriers can lead to large deviations in reaction probabilities. This brings a particularly interesting challenge for machine learning interatomic potentials, which are becoming well-established tools to accelerate molecular dynamics simulations. We compare state-of-the-art machine learning interatomic potentials with a particular focus on their inference performance on CPUs and suitability for high throughput simulation of reactive chemistry at surfaces. The considered models include polarizable atom interaction neural networks (PaiNN), recursively embedded atom neural networks (REANN), the MACE equivariant graph neural network, and atomic cluster expansion potentials (ACE). The models are applied to a dataset on reactive molecular hydrogen scattering on low-index surface facets of copper. All models are assessed for their accuracy, time-to-solution, and ability to simulate reactive sticking probabilities as a function of the rovibrational initial state and kinetic incidence energy of the molecule. REANN and MACE models provide the best balance between accuracy and time-to-solution and can be considered the current state-of-the-art in gas-surface dynamics. PaiNN models require many features for the best accuracy, which causes significant losses in computational efficiency. ACE models provide the fastest time-to-solution, however, models trained on the existing dataset were not able to achieve sufficiently accurate predictions in all cases.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
2 Department of Engineering , Cambridge CB2 1PZ, United Kingdom
3 Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico , Albuquerque, NM 87131, United States of America
4 Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China , Hefei, Anhui, People’s Republic of China; Hefei National Laboratory, University of Science and Technology of China , Hefei 230088, People’s Republic of China
5 Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom; Department of Physics, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom