Abstract
Automatic modulation classification (AMC) is an important process for future communication systems with prominent applications from spectrum management, and secure communication, to cognitive radio. The requirement for an efficient AMC classifier is due to its capability in blind modulation recognition, which is a difficult task in real scenarios where the limitations of traditional hardware and the complexity of channel impairments are involved. Therefore, this paper proposes a complete real-time AMC system based on software-defined radio and deep learning architecture. The system demodulation performance is verified through simulations and real channel impairment conditions to ensure reliability. With at most 6 times reduced number of parameters, two proposed models convolutional long short-term memory deep neural network and residual long short-term memory neural network also show a general improvement in classification accuracy compared with reference studies. The performance of these models at real-time AMC is tested with suitable processing time for practical applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 International University, School of Electrical Engineering, Ho Chi Minh city, Vietnam (GRID:grid.440795.b) (ISNI:0000 0004 0493 5452); Vietnam National University, Ho Chi Minh city, Vietnam (GRID:grid.444808.4) (ISNI:0000 0001 2037 434X)





