It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The present paper studies the shedding mechanism of partial cavitation in a Venturi Tube, dominated by re-entrant jet and bubbly shock mechanisms, by using two data-driven modal decomposition methods: proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). According to the snapshot data series obtained by high-speed photography, the modal decomposition and reconstruction of the grey image are carried out. The POD results indicate that the main frequency of the re-entrant jet is higher than that of the shock under the sixth-order mode, and the energy amplitude of the latter is about 20 times that of the former. Furthermore, as the cavitation number increases, the condensation shock mechanism eventually replaces the re-entrant jet mechanism. The DMD results show that the shock behaves obvious traveling wave mode, because the frequency is higher and the phase of the spatial distribution changes evenly under the fourth-order mode. POD and DMD can help to understand the shedding mechanism of partial cavitation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University , Jinan 250061, China
2 Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University , Ansan 15588, Republic of Korea
3 Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University , Jinan 250061, China; Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University , Ansan 15588, Republic of Korea