It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Zinc oxide (ZnO) is an attractive active material in emerging solar cell technologies, such as dye-sensitized solar cells (DSSCs), due to its high stability and electron mobility. The activity of ZnO can be enhanced by adding a small amount of impurity, such as iron oxide. Since zinc dross contains Zn as the primary element and Fe as the minor element, it can be used as a precursor to obtain iron oxide/ZnO. In this study, ZnO was prepared from zinc dross through a hydrometallurgy process and utilized as the active material for DSSCs. For comparison, pure ZnO was also prepared using zinc acetate as the precursor through the sol-gel process. X-ray diffraction (XRD) results show that pure ZnO was observed in the sample prepared using zinc acetate as the precursor, while ZnO with a Fe3O4 phase was observed in the sample prepared using zinc dross. Scanning electron microscopy (SEM) examinations reveal that the thickness of ZnO layer that was deposited onto fluorine-doped tin oxide glass was 11.3 ± 0.4 μm. The solar cell performance tests showed that the presence of dyes that adsorbed on ZnO synthesized from zinc dross could increase the efficiency of DSSCs up to 26.5 times while the ZnO synthesized from zinc acetate has 11.5 higher efficiency compared to the non-sensitized counterpart. Moreover, ZnO from zinc dross exhibited 1.2 times higher efficiency than ZnO from pure Zn precursor, indicating the feasibility of converting zinc dross waste into valuable materials.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung , Bandung 40132, Indonesia
2 Department of Renewable Energy Engineering, Universitas Prasetiya Mulya , Kavling Edutown l.1, Jl. BSD Raya Utama, BSD City, Tangerang 15339, Indonesia
3 Łukasiewicz Research Network - PORT Polish Center for Technology Development , Stabłowicka 147, Wrocław, 54-066, Poland
4 Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung , Bandung 40132, Indonesia; Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung , Ganesha 10 Bandung, Indonesia