It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Glioblastoma is a highly aggressive brain tumour that creates an immunosuppressive microenvironment. Microglia, the brain’s resident immune cells, play a crucial role in this environment. Glioblastoma cells can reprogramme microglia to create a supportive niche that promotes tumour growth. However, the mechanisms controlling the acquisition of a transcriptome associated with a tumour-supportive microglial reactive state are not fully understood. In this study, we investigated changes in the transcriptional profile of BV2 microglia exposed to C6 glioma cells. RNA-sequencing analysis revealed a significant upregulation of microglial inhibitor of DNA binding 1 (Id1) and Id2, helix-loop-helix negative transcription regulatory factors. The concomitant regulation of microglial ETS proto-oncogene 2, transcription factor (ETS2)-target genes, i.e., Dusp6, Fli1, Jun, Hmox1, and Stab1, led us to hypothesize that ETS2 could be regulated by ID proteins. In fact, ID2-ETS2 protein interactions increased in microglia exposed to glioma cells. In addition, perturbation of the ID2-ETS2 transcriptional axis influenced the acquisition of a microglial tumour-supportive phenotype. ID2 and ETS2 genes were found to be expressed by the tumour-associated microglia isolated from human glioblastoma tumour biopsies. Furthermore, ID2 and ETS2 gene expressions exhibited inverse prognostic values in patients with glioma in cohorts from The Cancer Genome Atlas. Collectively, our findings indicate that the regulation of ETS2 by ID2 plays a role in the transcriptional regulation of microglia in response to stimuli originating from glioblastoma cells, information that could lead to developing therapeutic strategies to manipulate microglial tumour-trophic functions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden (GRID:grid.4714.6) (ISNI:0000 0004 1937 0626)
2 Karolinska Institutet, Department of Oncology Pathology, Stockholm, Sweden (GRID:grid.4714.6) (ISNI:0000 0004 1937 0626)
3 Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden (GRID:grid.4714.6) (ISNI:0000 0004 1937 0626); Shui On Centre, Center for Neuromusculoskeletal Restorative Medicine, Wan Chai, Hong Kong (GRID:grid.4714.6)