It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Predicting what becomes popular on social media is crucial because it helps us understand future topics and public interests based on massive social data. Previous studies mainly focused on picking specific features and checking past statistic numbers, ignoring the hidden impact of messages passing along the complex relationships among different entities. People talk and connect with others on social media; thus, it is essential to consider how information spreads when studying social media networks. This work proposes a multi-layer temporal graph neural network (GNN) framework for predicting what will be popular on social media networks. This framework takes into account the way information spreads among different entities. The proposed method involves multi-layer relations and temporal information within a sequence of social media network snapshots. It learns the temporal representations of target entities in each snapshot and predicts how the popularity of a particular entity will change in future snapshots. The proposed method is evaluated with real-world data across four popularity trend prediction tasks. The experimental results prove that the proposed method performs better than various baselines, including traditional machine learning regression approaches, prior methods for popularity trend prediction, and other GNN models.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Tokyo Institute of Technology, Department of Computer Science, School of Computing, Meguro, Japan (GRID:grid.32197.3e) (ISNI:0000 0001 2179 2105); National Institute of Advanced Industrial Science and Technology, Artificial Intelligence Research Center, Koto, Japan (GRID:grid.208504.b) (ISNI:0000 0001 2230 7538)
2 National Institute of Advanced Industrial Science and Technology, Artificial Intelligence Research Center, Koto, Japan (GRID:grid.208504.b) (ISNI:0000 0001 2230 7538)