Full text

Turn on search term navigation

© 2024 Chakraborty, Dey. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Semantic segmentation of urban areas using Light Detection and Ranging (LiDAR) point cloud data is challenging due to the complexity, outliers, and heterogeneous nature of the input point cloud data. The machine learning-based methods for segmenting point clouds suffer from the imprecise computation of the training feature values. The most important factor that influences how precisely the feature values are computed is the neighborhood chosen by each point. This research addresses this issue and proposes a suitable adaptive neighborhood selection approach for individual points by completely considering the complex and heterogeneous nature of the input LiDAR point cloud data. The proposed approach is evaluated on high-density mobile and low-density aerial LiDAR point cloud datasets using the Random Forest machine learning classifier. In the context of performance evaluation, the proposed approach confirms the competitive performance over the state-of-the-art approaches. The computed accuracy and F1-score for the high-density Toronto and low-density Vaihingen datasets are greater than 91% and 82%, respectively.

Details

Title
Segmentation of LiDAR point cloud data in urban areas using adaptive neighborhood selection technique
Author
Chakraborty, Debobrata  VIAFID ORCID Logo  ; Dey, Emon Kumar
First page
e0307138
Section
Research Article
Publication year
2024
Publication date
Jul 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3082558393
Copyright
© 2024 Chakraborty, Dey. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.