Full Text

Turn on search term navigation

© 2024 Nakamura et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As we learned during the COVID-19 pandemic, vaccines are one of the most important tools in infectious disease control. To date, an unprecedentedly large volume of high-quality data on COVID-19 vaccinations have been accumulated. For preparedness in future pandemics beyond COVID-19, these valuable datasets should be analyzed to best shape an effective vaccination strategy. We are collecting longitudinal data from a community-based cohort in Fukushima, Japan, that consists of 2,407 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time courses of the vaccine-elicited antibody response based on mathematical modeling, we first identified basic demographic and health information that contributed to the main features of the antibody dynamics, i.e., the peak, the duration, and the area under the curve. We showed that these three features of antibody dynamics were partially explained by underlying medical conditions, adverse reactions to vaccinations, and medications, consistent with the findings of previous studies. We then applied to these factors a recently proposed computational method to optimally fit an “antibody score”, which resulted in an integer-based score that can be used as a basis for identifying individuals with higher or lower antibody titers from basic demographic and health information. The score can be easily calculated by individuals themselves or by medical practitioners. Although the sensitivity of this score is currently not very high, in the future, as more data become available, it has the potential to identify vulnerable populations and encourage them to get booster vaccinations. Our mathematical model can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.

Details

Title
Modeling and predicting individual variation in COVID-19 vaccine-elicited antibody response in the general population
Author
Nakamura, Naotoshi  VIAFID ORCID Logo  ; Kobashi, Yurie; Kwang Su Kim; Park, Hyeongki; Tani, Yuta; Shimazu, Yuzo; Zhao, Tianchen; Nishikawa, Yoshitaka  VIAFID ORCID Logo  ; Omata, Fumiya; Kawashima, Moe; Yoshida, Makoto; Abe, Toshiki; Saito, Yoshika; Senoo, Yuki; Nonaka, Saori; Takita, Morihito; Yamamoto, Chika; Kawamura, Takeshi; Sugiyama, Akira; Nakayama, Aya; Kaneko, Yudai; Yong Dam Jeong; Tatematsu, Daiki; Akao, Marwa; Sato, Yoshitaka  VIAFID ORCID Logo  ; Iwanami, Shoya  VIAFID ORCID Logo  ; Fujita, Yasuhisa; Wakui, Masatoshi; Aihara, Kazuyuki; Kodama, Tatsuhiko; Shibuya, Kenji; Iwami, Shingo  VIAFID ORCID Logo  ; Tsubokura, Masaharu
First page
e0000497
Section
Research Article
Publication year
2024
Publication date
May 2024
Publisher
Public Library of Science
e-ISSN
27673170
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3083982165
Copyright
© 2024 Nakamura et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.