Content area

Abstract

This study investigates the onset of linear instabilities and their later nonlinear interactions in the shear layer of an initially-laminar jet using a combination of stability analysis and data from high-fidelity flow simulations. We provide a complete picture of the vortex-pairing process. Hydrodynamic instabilities initiate the transition to turbulence, causing the shear layer to spread rapidly. In this process, the shear layer rolls up to form vortices, accompanied by the exponential growth of the fundamental frequency. As the fundamental frequency grows, it gains energy from the mean flow. Subsequently, as it saturates and begins to decay, the fundamental vortices start to pair. During this vortex pairing process, the subharmonic vortex acquires energy both linearly from the mean flow and nonlinearly through a reverse cascade from the fundamental. The process concludes when the subharmonic vortex eventually saturates. Similarly, two subharmonic vortices merge to form a second subharmonic vortex. Our results confirm Kelly's (1967) hypothesis of a resonance mechanism between the fundamental and subharmonic, which supplies energy to the subharmonic. In this multi-tonal, convective-dominated flow, we clarify the ambiguity surrounding the fundamental frequency by demonstrating that the spatially most amplified frequency should be considered fundamental, rather than the structure associated with the spectral energy peak. For the initially-laminar jet considered here, the fundamental frequency corresponds to the fourth largest spectral peak, highlighting the important distinction between the energetically and dynamical significance of a tone. Despite its low energy, the fundamental frequency is dynamically dominant as it determines all other spectral peaks and supplies energy to the subharmonics through a reverse energy cascade.

Details

1009240
Title
Nonlinear dynamics of vortex pairing in transitional jets
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Jul 31, 2024
Section
Nonlinear Sciences; Physics (Other)
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-08-02
Milestone dates
2024-07-23 (Submission v1); 2024-07-31 (Submission v2)
Publication history
 
 
   First posting date
02 Aug 2024
ProQuest document ID
3084545236
Document URL
https://www.proquest.com/working-papers/nonlinear-dynamics-vortex-pairing-transitional/docview/3084545236/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-08-03
Database
ProQuest One Academic