Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In Asian populations with non-small-cell lung cancer (NSCLC), EGFR mutations are highly prevalent, occurring in roughly half of these patients. Studies have revealed that individuals with EGFR mutation typically fare worse with immunotherapy. In patients who received EGFR tyrosine kinase inhibitor (TKI) treatment followed by anti-PD-1 therapy, poor results were observed. The underlying mechanism remains unclear. We used high-resolution flow cytometry and ELISA to detect the circulating level of small extracellular vesicle (sEV) PD-L1 in NSCLC individuals with EGFR mutations before and after receiving TKIs. The secretion amount of sEV PD-L1 of lung cancer cell lines with EGFR mutations under TKI treatment or not were detected using high-resolution flow cytometry and Western blotting. The results revealed that patients harboring EGFR mutations exhibit increased levels of sEV PD-L1 in circulation, which inversely correlated with the presence of CD8+ T cells in tumor tissues. Furthermore, tumor cells carrying EGFR mutations secrete a higher quantity of PD-L1-positive sEVs. TKI treatment appeared to amplify the levels of PD-L1-positive sEVs in the bloodstream. Mutation-induced and TKI-induced sEVs substantially impaired the functionality of CD8+ T cells. Importantly, our findings indicated that EGFR mutations and TKI therapies promote secretion of PD-L1-positive sEVs via distinct molecular mechanisms, namely the HRS and ALIX pathways, respectively. In conclusion, the increased secretion of PD-L1-positive sEVs, prompted by genetic alterations and TKI administration, may contribute to the limited efficacy of immunotherapy observed in EGFR-mutant patients and patients who have received TKI treatment.

Details

Title
EGFR Mutation and TKI Treatment Promote Secretion of Small Extracellular Vesicle PD-L1 and Contribute to Immunosuppression in NSCLC
Author
Hai-Ming, Liu 1 ; Zi-Li, Yu 2   VIAFID ORCID Logo  ; Hou-Fu, Xia 2 ; Lin-Zhou, Zhang 1 ; Qiu-Yun, Fu 1 ; Wang, Yi 3 ; Hong-Yun, Gong 3 ; Chen, Gang 4 

 State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China 
 State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China 
 Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China 
 State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China 
First page
820
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084727850
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.