Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.

Details

Title
Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review
Author
Zhang, Zhiyuan 1 ; Liu, Hui 1 ; Deng-Guang Yu 1   VIAFID ORCID Logo  ; Sim-Wan, Annie Bligh 2   VIAFID ORCID Logo 

 School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; [email protected] (Z.Z.); [email protected] (H.L.) 
 School of Health Sciences, Saint Francis University, Hong Kong 999077, China 
First page
789
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2218273X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084730948
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.