Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Addressing the issue of incorrect and missed detections caused by the complex types, uneven scales, and small sizes of defect targets in transmission lines, this paper proposes a defect-detection method based on cross-scale feature fusion, PGE-YOLO. Firstly, feature extraction is enriched by replacing the convolutional blocks in the backbone network that need to be cascaded and fused using the Par_C2f network module, which incorporates a parallel network (ParNet). Secondly, a four-layer efficient multi-scale attention (EMA) mechanism is incorporated into the network’s neck to address long and short dependency issues. This enhancement aims to improve global information retention by employing parallel substructures and integrating cross-space feature information. Finally, the paradigm of generalized feature fusion (GFPN) is introduced and reconfigured to develop a novel CE-GFPN. This model effectively integrates shallow feature information with deep feature information to enhance the capability of feature fusion and improve detection performance. Using a real transmission line multi-defect dataset from UAV aerial photography and the CPLID dataset, ablation and comparison experiments with various models demonstrated that our model achieved superior results. Compared to the initial YOLOv8n model, our model increased the detection accuracy by 6.6% and 1.2%, respectively, while ensuring there is no surge in the number of parameters. This ensures that the real-time and accuracy requirements for defect detection in the industry are satisfied.

Details

Title
PGE-YOLO: A Multi-Fault-Detection Method for Transmission Lines Based on Cross-Scale Feature Fusion
Author
Cai, Zixuan 1   VIAFID ORCID Logo  ; Wang, Tianjun 2 ; Han, Weiyu 1   VIAFID ORCID Logo  ; Ding, Anan 1 

 School of Computer Science and Technology, Xinjiang University, Urumqi 830000, China; [email protected] (Z.C.); [email protected] (W.H.); [email protected] (A.D.) 
 School of Computer Science and Technology, Xinjiang University, Urumqi 830000, China; [email protected] (Z.C.); [email protected] (W.H.); [email protected] (A.D.); State Grid XinJiang Electric Power Co., Ltd., Urumqi 830000, China 
First page
2738
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084743474
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.