Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, a spherical CrCoFeNiMn high-entropy alloy (HEA) powder with uniform size was prepared using gas atomization. High-quality CrCoFeNiMn HEA coatings were then applied to a 316L stainless steel substrate using prepowdered laser cladding. The main focus of the study is on the phase structure composition and stability, microstructure evolution mechanism, mechanical properties, and wear resistance of CrCoFeNiMn HEA coatings. The results show that the CrCoFeNiMn HEA coatings prepared using gas atomization and laser melting techniques have a single FCC phase structure with a stable phase composition. The coatings had significantly higher diffraction peak intensities than the prepared HEA powders. The coating showed an evolution of columnar and equiaxed crystals, as well as twinned dislocation structures. Simultaneously, the microstructure transitions from large-angle grain boundaries to small-angle grain boundaries, resulting in a significant refinement of the grain structure. The CrCoFeNiMn HEA coating exhibits excellent mechanical properties. The microhardness of the coating increased by 66.06% when compared to the substrate, the maximum wear depth was reduced by 65.59%, and the average coefficient of friction decreased by 9.71%. These improvements are mainly attributed to the synergistic effects of grain boundary strengthening, fine grain strengthening, and twinning and dislocation strengthening within the coating.

Details

Title
Preparation of CrCoFeNiMn High-Entropy Alloy Coatings Using Gas Atomization and Laser Cladding: An Investigation of Microstructure, Mechanical Properties, and Wear Resistance
Author
Tian, Haodong  VIAFID ORCID Logo  ; Yu, Yuzhen  VIAFID ORCID Logo  ; Wang, Xi; Chen, Fan; Liu, He
First page
906
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084751660
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.