Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This article studies a class of uncertain nonlinear multiagent systems (MASs) with state restrictions. RBFNNs, or radial basis function neural networks, are utilized to estimate the uncertainty of the system. To approximate the unknown states and disturbances, the state observer and disturbance observer are proposed to resolve those issues. Moreover, a fast finite-time consensus control technique is suggested in order to accomplish fast finite-time stability without going against the full-state requirements. It is demonstrated that every signal could be stable and boundless, and an event-triggered controller is considered for the saving of resources. Ultimately, the simulated example demonstrates the validity of the developed approach.

Details

Title
Fast Finite-Time Observer-Based Event-Triggered Consensus Control for Uncertain Nonlinear Multiagent Systems with Full-State Constraints
Author
Zhou, Kewei 1   VIAFID ORCID Logo  ; Wang, Xin 2 

 College of Westa, Southwest University, Chongqing 400715, China; [email protected] 
 College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China 
First page
559
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084781248
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.