Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effect of energy saving and carbon reduction in the building industry is closely related to the realization of China’s double carbon goal. In this study, a two-dimensional framework for building life cycle carbon emissions was established, which takes into account the early stages of building design such as the feasibility study stage and scheme design stage. Taking 57 residential buildings in Xi’an City as examples, the life cycle carbon emission characteristics of residential buildings in cold areas were introduced. This study found that the life cycle carbon emission intensity is about 45~55 kgCO2/(m2·a). The operation and maintenance stage and building materials production stage accounted for the largest proportion of carbon emissions, and the sum of carbon emissions of the two stages accounted for 92.3% of the total carbon emissions. In addition, based on the probability density function, the carbon emission intensity distributions of the building life cycle, building material production stage, building material transportation stage, and operation and maintenance stage were analyzed, and it was found that each distribution fitting graph was generally in line with a lognormal distribution, and their expected value provided a reference index for carbon emission pre-assessment in the feasibility study stage. Based on the analysis and determination of 11 independent variables that affect the total carbon emissions, such as area, floor number, story height, and number of households, a multiple linear regression model for carbon emission pre-assessment in the design stage of building schemes is proposed. The R2adj of the model is 0.985 and the error is about 10%. The prediction model can provide beneficial guidance for the life cycle carbon emission prediction in the design stage of building projects, so as to reduce carbon emissions by changing building design.

Details

Title
Research on Carbon Emission Pre-Assessment of Residential Buildings in Xi’an City during the Scheme Design Stage
Author
Gao, Huan 1 ; Lu, Yang 2 ; Wang, Xinke 2 ; Zhang, Lisha 3 ; Wang, Qize 3 ; Wu, Kang 3 

 School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710116, China; [email protected] (H.G.); ; Shanghai Civil aviation Electromechanical System Co., Ltd., Shanghai 710116, China 
 School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710116, China; [email protected] (H.G.); 
 Future City Innovation Technology Co., Ltd., Shaanxi Construction Engineering Holding Group, Xi’an 710116, China; SCEGC-XJTU Joint Research Center for Future City Construction and Management Innovation, Xi’an Jiaotong University, Xi’an 710116, China 
First page
2171
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084782835
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.