Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This semi-analytical study is presented examining the quasi-steady creeping flow caused by a soft (composite) spherical particle, which is a hard (impermeable) sphere core covered by a porous (permeable) layer, translating in an incompressible Newtonian fluid within a non-concentric spherical cavity along the line joining their centers. To solve the Brinkman and Stokes equations for the flow fields inside and outside the porous layer, respectively, general solutions are constructed in two spherical coordinate systems attached to the particle and cavity individually. The boundary conditions at the cavity wall and particle surface are fulfilled through a collocation method. Numerical results of the normalized drag force exerted by the fluid on the particle are obtained for numerous values of the ratios of core-to-particle radii, particle-to-cavity radii, the distance between the centers to the radius difference of the particle and cavity, and the particle radius to porous layer permeation length. For the translation of a soft sphere within a concentric cavity or near a small-curvature cavity wall, our drag results agree with solutions available in the literature. The cavity effect on the drag force of a translating soft sphere is monotonically increasing functions of the ratios of core-to-particle radii and the particle radius to porous layer permeation length. While the drag force generally rises with an increase in the ratio of particle-to-cavity radii, a weak minimum (surprisingly, smaller than that for an unconfined soft sphere) may occur for the case of low ratios of core-to-particle radii and of the particle radius to permeation length. This drag force generally increases with an increase in the eccentricity of the particle position, but in the case of low ratios of core-to-particle radii and particle radius to permeation length, the drag force may decrease slightly with increasing eccentricity.

Details

Title
Slow Translation of a Composite Sphere in an Eccentric Spherical Cavity
Author
Chen, Yi C; Keh, Huan J  VIAFID ORCID Logo 
First page
154
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084826356
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.