Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Autonomous vehicles (AVs) strive to adapt to the specific characteristics of sustainable urban environments. Accurate 3D object detection with LiDAR is paramount for autonomous driving. However, existing research predominantly relies on the 3D object-based assumption, which overlooks the complexity of real-world road environments. Consequently, current methods experience performance degradation when targeting only local features and overlooking the intersection of objects and road features, especially in uneven road conditions. This study proposes a 3D Object-Oriented-Segmentation Spatial-Attention (O2SAT) approach to distinguish object points from road points and enhance the keypoint feature learning by a channel-wise spatial attention mechanism. O2SAT consists of three modules: Object-Oriented Segmentation (OOS), Spatial-Attention Feature Reweighting (SFR), and Road-Aware 3D Detection Head (R3D). OOS distinguishes object and road points and performs object-aware downsampling to augment data by learning to identify the hidden connection between landscape and object; SFR performs weight augmentation to learn crucial neighboring relationships and dynamically adjust feature weights through spatial attention mechanisms, which enhances the long-range interactions and contextual feature discrimination for noise suppression, improving overall detection performance; and R3D utilizes refined object segmentation and optimized feature representations. Our system forecasts prediction confidence into existing point-backbones. Our method’s effectiveness and robustness across diverse datasets (KITTI) has been demonstrated through vast experiments. The proposed modules seamlessly integrate into existing point-based frameworks, following a plug-and-play approach.

Details

Title
O2SAT: Object-Oriented-Segmentation-Guided Spatial-Attention Network for 3D Object Detection in Autonomous Vehicles
Author
Husnain Mushtaq 1   VIAFID ORCID Logo  ; Deng, Xiaoheng 1   VIAFID ORCID Logo  ; Ullah, Irshad 1 ; Mubashir Ali 2 ; Babur Hayat Malik 3 

 School of Computer Science and Engineering, Central South University, Changsha 410083, China; [email protected] (H.M.); [email protected] (I.U.) 
 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK; [email protected] 
 Department of Computer Science, University of Chenab, Gujrat 50700, Pakistan; [email protected] 
First page
376
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20782489
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3084900090
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.