Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Phosphogypsum (PG) occupies a large amount of land due to its large annual production and low utilization rate, and at the same time causes serious environmental problems due to toxic impurities. PG is used for mine backfill, and industrial solid waste is a curing agent for PG, which can save the filling cost and reduce environmental pollution. In this paper, PG was used as a raw material, combined with steel slag (SS) and ground granulated blast-furnace slag (GGBS) under the action of an alkali-activated agent (NaOH) to prepare all-solid waste phosphogypsum-based backfill material (PBM). The effect of the GGBS to SS ratio on the compressive strength and toxic leaching of PBM was investigated. The chemical composition of the raw materials was obtained by XRF analysis, and the mineral composition and morphology of PBM and its stabilization/curing mechanism against heavy metals were analyzed using XRD and SEM-EDS. The results showed that the best performance of PBM was achieved when the contents of PG, GGBS, and SS were 80%, 13%, and 7%, the liquid-to-solid ratio was 0.4, and the mass concentration of NaOH was 4%, with a strength of 2.8 MPa at 28 days. The leaching concentration of fluorine at 7 days met the standard of groundwater class IV (2 mg/L), and the leaching concentration of phosphorus was detected to be less than 0.001 mg/L, and the leaching concentration of heavy metals met the environmental standard at 14 d. The hydration concentration in PBM met the environmental standard. The hydration products in PBM are mainly ettringite and C-(A)-S-H gel, which can effectively stabilize the heavy metals in PG through chemical precipitation, physical adsorption, and encapsulation.

Details

Title
Properties of Cemented Filling Materials Prepared from Phosphogypsum-Steel Slag–Blast-Furnace Slag and Its Environmental Effect
Author
Li, Kai 1 ; Zhu, Lishun 2 ; Wu, Zhonghu 2 ; Wang, Xiaomin 2 

 Guiyang Water Environment Group Co., Ltd., Guiyang 550025, China; [email protected] 
 College of Civil Engineering, Guizhou University, Guiyang 550025, China; [email protected] (L.Z.); [email protected] (Z.W.) 
First page
3618
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3085003803
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.