Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a control strategy synthesis method for dynamical systems with differential constraints, emphasizing the prioritization of specific rules. Special attention is given to scenarios where not all rules can be simultaneously satisfied to complete a given task, necessitating decisions on the extent to which each rule is satisfied, including which rules must be upheld or disregarded. We propose a learning-based Model Predictive Control (MPC) method designed to address these challenges. Our approach integrates a learning method with a traditional control scheme, enabling the controller to emulate human expert behavior. Rules are represented as Signal Temporal Logic (STL) formulas. A robustness margin, quantifying the degree of rule satisfaction, is learned from expert demonstrations using a Conditional Variational Autoencoder (CVAE). This learned margin is then applied in the MPC process to guide the prioritization or exclusion of rules. In a track driving simulation, our method demonstrates the ability to generate behavior resembling that of human experts and effectively manage rule-based dilemmas.

Details

Title
Model Predictive Control with Variational Autoencoders for Signal Temporal Logic Specifications
Author
Im, Eunji; Choi, Minji; Cho, Kyunghoon  VIAFID ORCID Logo 
First page
4567
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3085070196
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.