It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Swin Transformer is an important work among all the attempts to reduce the computational complexity of Transformers while maintaining its excellent performance in computer vision. Window-based patch self-attention can use the local connectivity of the image features, and the shifted window-based patch self-attention enables the communication of information between different patches in the entire image scope. Through in-depth research on the effects of different sizes of shifted windows on the patch information communication efficiency, this article proposes a Dual-Scale Transformer with double-sized shifted window attention method. The proposed method surpasses CNN-based methods such as U-Net, AttenU-Net, ResU-Net, CE-Net by a considerable margin (Approximately 3%
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Southern University of Science and Technology, School of System Design and Intelligent Manufacturing, Shenzhen, China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790)
2 Tsinghua University, The Future Laboratory, Haidian District, China (GRID:grid.12527.33) (ISNI:0000 0001 0662 3178)