Full text

Turn on search term navigation

© 2024 Ladrova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper presents a validation of novel multichannel ballistocardiography (BCG) measuring system, enabling heartbeat detection from information about movements during myocardial contraction and dilatation of arteries due to blood expulsion. The proposed methology includes novel sensory system and signal processing procedure based on Wavelet transform and Hilbert transform. Because there are no existing recommendations for BCG sensor placement, the study focuses on investigation of BCG signal quality measured from eight different locations within the subject’s body. The analysis of BCG signals is primarily based on heart rate (HR) calculation, for which a J-wave detection based on decision-making processes was used. Evaluation of the proposed system was made by comparing with electrocardiography (ECG) as a gold standard, when the averaged signal from all sensors reached HR detection sensitivity higher than 95% and two sensors showed a significant difference from ECG measurement.

Details

Title
Multichannel ballistocardiography: A comparative analysis of heartbeat detection across different body locations
Author
Ladrova, Martina; Barvik, Filip; Brablik, Jindrich  VIAFID ORCID Logo  ; Jaros, Rene  VIAFID ORCID Logo  ; Martinek, Radek  VIAFID ORCID Logo 
First page
e0306074
Section
Research Article
Publication year
2024
Publication date
Aug 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3087218169
Copyright
© 2024 Ladrova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.