It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Deep optical optimization has recently emerged as a new paradigm for designing computational imaging systems using only the output image as the objective. However, it has been limited to either simple optical systems consisting of a single element such as a diffractive optical element or metalens, or the fine-tuning of compound lenses from good initial designs. Here we present a DeepLens design method based on curriculum learning, which is able to learn optical designs of compound lenses ab initio from randomly initialized surfaces without human intervention, therefore overcoming the need for a good initial design. We demonstrate the effectiveness of our approach by fully automatically designing both classical imaging lenses and a large field-of-view extended depth-of-field computational lens in a cellphone-style form factor, with highly aspheric surfaces and a short back focal length.
The authors present a design method based on curriculum learning, able to learn optical designs of compound lenses from randomly initialized surfaces without human intervention, demonstrating fully automated design of both classical imaging lenses and extended depth-of-field computational lenses.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer