Content area

Abstract

Generative artificial intelligence (GAI) is a promising technique towards 6G networks, and generative foundation models such as large language models (LLMs) have attracted considerable interest from academia and telecom industry. This work considers a novel edge-cloud deployment of foundation models in 6G networks. Specifically, it aims to minimize the service delay of foundation models by radio resource allocation and task offloading, i.e., offloading diverse content generation tasks to proper LLMs at the network edge or cloud. In particular, we first introduce the communication system model, i.e., allocating radio resources and calculating link capacity to support generated content transmission, and then we present the LLM inference model to calculate the delay of content generation. After that, we propose a novel in-context learning method to optimize the task offloading decisions. It utilizes LLM's inference capabilities, and avoids the difficulty of dedicated model training or fine-tuning as in conventional machine learning algorithms. Finally, the simulations demonstrate that the proposed edge-cloud deployment and in-context learning task offloading method can achieve satisfactory generation service quality without dedicated model training or fine-tuning.

Details

1009240
Business indexing term
Identifier / keyword
Title
Generative AI as a Service in 6G Edge-Cloud: Generation Task Offloading by In-context Learning
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Dec 19, 2024
Section
Computer Science; Electrical Engineering and Systems Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-12-20
Milestone dates
2024-08-05 (Submission v1); 2024-12-19 (Submission v2)
Publication history
 
 
   First posting date
20 Dec 2024
ProQuest document ID
3089689014
Document URL
https://www.proquest.com/working-papers/generative-ai-as-service-6g-edge-cloud-generation/docview/3089689014/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-12-21
Database
2 databases
  • ProQuest One Academic
  • ProQuest One Academic