Abstract
Background
Driven by increased prevalence of type 2 diabetes and ageing populations, wounds affect millions of people each year, but monitoring and treatment remain limited. Glucocorticoid (stress hormones) activation by the enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1) also impairs healing. We recently reported that 11β‐HSD1 inhibition with oral AZD4017 improves acute wound healing by manual 2D optical coherence tomography (OCT), although this method is subjective and labour‐intensive.
Objectives
Here, we aimed to develop an automated method of 3D OCT for rapid identification and quantification of multiple wound morphologies.
Methods
We analysed 204 3D OCT scans of 3 mm punch biopsies representing 24 480 2D wound image frames. A u‐net method was used for image segmentation into 4 key wound morphologies: early granulation tissue, late granulation tissue, neo‐epidermis, and blood clot. U‐net training was conducted with 0.2% of available frames, with a mini‐batch accuracy of 86%. The trained model was applied to compare segment area (per frame) and volume (per scan) at days 2 and 7 post‐wounding and in AZD4017 compared to placebo.
Results
Automated OCT distinguished wound tissue morphologies, quantifying their volumetric transition during healing, and correlating with corresponding manual measurements. Further, AZD4017 improved epidermal re‐epithelialisation (by manual OCT) with a corresponding trend towards increased neo‐epidermis volume (by automated OCT).
Conclusion
Machine learning and OCT can quantify wound healing for automated, non‐invasive monitoring in real‐time. This sensitive and reproducible new approach offers a step‐change in wound healing research, paving the way for further development in chronic wounds.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
2 Emerging Innovations Unit, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
3 Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
4 Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK





