Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Automatic International Classification of Disease (ICD) coding, a system for assigning proper codes to a given clinical text, has received increasing attention. Previous studies have focused on formulating the ICD coding task as a multi-label prediction approach, exploring the relationship between clinical texts and ICD codes, parent codes and child codes, and siblings. However, the large search space of ICD codes makes it difficult to localize target labels. Moreover, there exists a great unbalanced distribution of ICD codes at different levels. In this work, we propose LabGraph, which transfers ICD coding into a graph generation problem. Specifically, we present adversarial domain adaptation training algorithms, graph reinforcement algorithms, and adversarial perturbation regularization. Then, we present a discriminator for label graphs that calculates the reward for each ICD code in the generator label graph. LabGraph surpasses existing state-of-the-art approaches on core assessment measures such as micro-F1, micro-AUC, and P@K, leading to the formation of a new state-of-the-art study.

Details

Title
Towards Automatic ICD Coding via Label Graph Generation
Author
Nie, Peng 1 ; Wu, Huanqin 1 ; Cai, Zhanchuan 2   VIAFID ORCID Logo 

 School of Computer, Guangdong University of Science and Technology, Dongguan 523083, China; [email protected] (P.N.); 
 School of Computer Science and Engineering, Macau University of Science and Technology, Macau 999078, China 
First page
2398
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090918423
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.