Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To address the issue of accuracy in Simultaneous Localization and Mapping (SLAM) for forested areas, a novel point cloud adaptive filtering algorithm is proposed in the paper, based on point cloud data obtained by backpack Light Detection and Ranging (LiDAR). The algorithm employs a K-D tree to construct the spatial position information of the 3D point cloud, deriving a linear model that is the guidance information based on both the original and filtered point cloud data. The parameters of the linear model are determined by minimizing the cost function using an optimization strategy, and a guidance point cloud filter is subsequently constructed based on these parameters. The results demonstrate that, comparing the diameter at breast height (DBH) and tree height before and after filtering with the measured true values, the accuracy of SLAM mapping is significantly improved after filtering. The Mean Absolute Error (MAE) of DBH before and after filtering are 2.20 cm and 1.16 cm; the Root Mean Square Error (RMSE) values are 4.78 cm and 1.40 cm; and the relative RMSE values are 29.30% and 8.59%. For tree height, the MAE before and after filtering are 0.76 m and 0.40 m; the RMSE values are 1.01 m and 0.50 m; the relative RMSE values are 7.33% and 3.65%. The experimental results validate that the proposed adaptive point cloud filtering method based on guided information is an effective point cloud preprocessing method for enhancing the accuracy of SLAM mapping in forested areas.

Details

Title
A Novel Point Cloud Adaptive Filtering Algorithm for LiDAR SLAM in Forest Environments Based on Guidance Information
Author
Yang, Shuhang  VIAFID ORCID Logo  ; Xing, Yanqiu; Wang, Dejun  VIAFID ORCID Logo  ; Deng, Hangyu
First page
2714
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090930703
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.