Full text

Turn on search term navigation

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This review comprehensively addresses the developments and applications of polymer materials in optoelectronics. Especially, this review introduces how the materials absorb, emit, and transfer charges, including the exciton–vibrational coupling, nonradiative and radiative processes, Förster Resonance Energy Transfer (FRET), and energy dynamics. Furthermore, it outlines charge trapping and recombination in the materials and draws the corresponding practical implications. The following section focuses on the practical application of organic materials in optoelectronics devices and highlights the detailed structure, operational principle, and performance metrics of organic photovoltaic cells (OPVs), organic light-emitting diodes (OLEDs), organic photodetectors, and organic transistors in detail. Finally, this study underscores the transformative impact of organic materials on the evolution of optoelectronics, providing a comprehensive understanding of their properties, mechanisms, and diverse applications that contribute to advancing innovative technologies in the field.

Details

Title
Polymer Materials for Optoelectronics and Energy Applications
Author
Lim, Ju Won  VIAFID ORCID Logo 
First page
3698
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090952813
Copyright
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.