Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The close relationship between land use and carbon stock is crucial for regional carbon balance, territorial and spatial planning, and the sustainable development of ecosystems. As a pioneer of Park Cities, Chengdu plays a vital role in Chinese cities. To investigate the impact of Park City construction on carbon stock, this study adopted a new perspective, the Park City perspective, using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to analyze the spatial and temporal differences in carbon stock. Additionally, we used Geographic Detector to analyze the driving factors of carbon stock in Chengdu. Based on the carbon peaking and carbon neutrality goals (peaking carbon dioxide emissions before 2030 and achieving carbon neutrality before 2060), we simulated the carbon stock in Chengdu for the years 2030 and 2060. Simultaneously, combining the Future Land Use Simulation (FLUS) model, we simulated the changing trends of carbon stock in Chengdu under three scenarios: the natural development scenario (NDS), cultivated land protection scenario (CLDS), and Park City scenario (PCS). The results show the following: (1) After the construction of the Park City, the quality of forest land improved, resulting in an increase in forest carbon stock by 1.19 × 106 tons. (2) Compared to the scenario without Park City construction, the implementation of the Park City led to a total carbon stock increase of 3.75 × 105 tons, with forest carbon stock increasing by 7.48 × 105 tons. (3) The PCS is the most conducive to achieving the carbon peaking and carbon neutrality goals, with the highest carbon stock. (4) Carbon stock is mainly driven by socio-economic factors. Land use/land cover (LULC) has the greatest explanatory power, with a q value of 0.9. The Park City is of great significance for an increase in carbon stock in Chengdu.

Details

Title
Exploring New Avenues in Sustainable Urban Development: Ecological Carbon Dynamics of Park City in Chengdu
Author
Tang, Lin 1   VIAFID ORCID Logo  ; Wang, Jing 1 ; Luo, Xu 1 ; Lu, Heng 1 

 Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610068, China; The Faculty Geography Resource Sciences, Sichuan Normal University, Chengdu 610101, China 
First page
6471
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3090955751
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.