It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Objective
To establish a machine learning model based on radiomics and clinical features derived from non-contrast CT to predict futile recanalization (FR) in patients with anterior circulation acute ischemic stroke (AIS) undergoing endovascular treatment.
Methods
A retrospective analysis was conducted on 174 patients who underwent endovascular treatment for acute anterior circulation ischemic stroke between January 2020 and December 2023. FR was defined as successful recanalization but poor prognosis at 90 days (modified Rankin Scale, mRS 4–6). Radiomic features were extracted from non-contrast CT and selected using the least absolute shrinkage and selection operator (LASSO) regression method. Logistic regression (LR) model was used to build models based on radiomic and clinical features. A radiomics-clinical nomogram model was developed, and the predictive performance of the models was evaluated using area under the curve (AUC), accuracy, sensitivity, and specificity.
Results
A total of 174 patients were included. 2016 radiomic features were extracted from non-contrast CT, and 9 features were selected to build the radiomics model. Univariate and stepwise multivariate analyses identified admission NIHSS score, hemorrhagic transformation, NLR, and admission blood glucose as independent factors for building the clinical model. The AUC of the radiomics-clinical nomogram model in the training and testing cohorts were 0.860 (95%CI 0.801–0.919) and 0.775 (95%CI 0.605–0.945), respectively.
Conclusion
The radiomics-clinical nomogram model based on non-contrast CT demonstrated satisfactory performance in predicting futile recanalization in patients with anterior circulation acute ischemic stroke.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer