Content area

Abstract

We present lazy visual grounding, a two-stage approach of unsupervised object mask discovery followed by object grounding, for open-vocabulary semantic segmentation. Plenty of the previous art casts this task as pixel-to-text classification without object-level comprehension, leveraging the image-to-text classification capability of pretrained vision-and-language models. We argue that visual objects are distinguishable without the prior text information as segmentation is essentially a vision task. Lazy visual grounding first discovers object masks covering an image with iterative Normalized cuts and then later assigns text on the discovered objects in a late interaction manner. Our model requires no additional training yet shows great performance on five public datasets: Pascal VOC, Pascal Context, COCO-object, COCO-stuff, and ADE 20K. Especially, the visually appealing segmentation results demonstrate the model capability to localize objects precisely. Paper homepage: https://cvlab.postech.ac.kr/research/lazygrounding

Details

1009240
Title
In Defense of Lazy Visual Grounding for Open-Vocabulary Semantic Segmentation
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Aug 9, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-08-12
Milestone dates
2024-08-09 (Submission v1)
Publication history
 
 
   First posting date
12 Aug 2024
ProQuest document ID
3092074602
Document URL
https://www.proquest.com/working-papers/defense-lazy-visual-grounding-open-vocabulary/docview/3092074602/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-08-13
Database
ProQuest One Academic