Full text

Turn on search term navigation

© 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The photovoltaic (PV) power generation and cooling demand of the air conditioner are increased along with an increase in solar irradiation. Therefore, considering such fact, in this paper, PV power is integrated with the air conditioner to support the grid. With recent developments in power electronics, the air conditioning systems are operated in variable speed using variable frequency drive (VFD) technology. In this paper, taking the advantage of the VFD technology, PV power is directly injected into the DC bus of VFD using an isolated DC‐DC converter. In this methodology, due to the high‐frequency DC‐DC conversion, high power DC‐AC (50 Hz) stage is eliminated, and seamless power is transferred from PV generation to the load without interrupting the main operation of the air conditioner. Thus, the reliability of the system is enhanced with the reduction in overall cost, conversion losses and bulkiness. With the PV power support, the peak amplitude of the grid current is reduced and consequently the power consumption, reactive power intake from the grid, as well as the harmonics component of the grid current, are reduced. This scheme is used in rural or suburban areas where the solar profile is significant and air conditioner is extensively used.

Details

Title
A methodology of photovoltaic power integration in air conditioning system – An inverter‐less approach
Author
Das, Dhiman 1   VIAFID ORCID Logo  ; Mishra, Sukumar 1 ; Singh, Bhim 1 

 Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India 
Pages
368-379
Section
ORIGINAL RESEARCH
Publication year
2022
Publication date
Sep 1, 2022
Publisher
John Wiley & Sons, Inc.
ISSN
25168401
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3092322671
Copyright
© 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.