Content area

Abstract

This paper presents a novel event camera simulation system fully based on physically based Monte Carlo path tracing with adaptive path sampling. The adaptive sampling performed in the proposed method is based on a statistical technique, hypothesis testing for the hypothesis whether the difference of logarithmic luminances at two distant periods is significantly larger than a predefined event threshold. To this end, our rendering system collects logarithmic luminances rather than raw luminance in contrast to the conventional rendering system imitating conventional RGB cameras. Then, based on the central limit theorem, we reasonably assume that the distribution of the population mean of logarithmic luminance can be modeled as a normal distribution, allowing us to model the distribution of the difference of logarithmic luminance as a normal distribution. Then, using Student's t-test, we can test the hypothesis and determine whether to discard the null hypothesis for event non-occurrence. When we sample a sufficiently large number of path samples to satisfy the central limit theorem and obtain a clean set of events, our method achieves significant speed up compared to a simple approach of sampling paths uniformly at every pixel. To our knowledge, we are the first to simulate the behavior of event cameras in a physically accurate manner using an adaptive sampling technique in Monte Carlo path tracing, and we believe this study will contribute to the development of computer vision applications using event cameras.

Details

1009240
Title
Monte Carlo Path Tracing and Statistical Event Detection for Event Camera Simulation
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Aug 15, 2024
Section
Computer Science
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-08-16
Milestone dates
2024-08-15 (Submission v1)
Publication history
 
 
   First posting date
16 Aug 2024
ProQuest document ID
3093677258
Document URL
https://www.proquest.com/working-papers/monte-carlo-path-tracing-statistical-event/docview/3093677258/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-08-17
Database
ProQuest One Academic