It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Transient water-limited environments are understood to have hosted microbial communities early in Earth’s history, and thus, may have been important ecosystems for life in ancient fluvial systems on Mars and water-limited environments on rocky Earth-like exoplanets. Similar environmental systems exist on Earth today, acting as meaningful analogs to study the preservation and detection of life in these environments. Particularly useful analogs are the McMurdo Dry Valleys of Antarctica, given their cold temperatures, aridity, elevated UV radiation exposure, and predominantly microbial ecosystem. Basins in these valleys contain ephemeral glacial meltwater streams, which contain a diversity of microbial communities that are only active when the streams are flowing ten weeks of the summer. These microbial communities were studied to examine how their in situ and remote biosignatures could inform the detection of similar life on Mars and rocky exoplanets. Specifically, these organisms were found in association with carbonate rock coatings, morphologically resembling modern and ancient stromatolites from rivers, ponds, lakes, and hot springs. Microorganisms from these communities were preserved within and influenced the formation of these coatings, becoming an additional Antarctic analog to ancient stromatolites. The presence of these carbonate coatings in an ephemeral stream suggests that processes in transient fluvial environments on Mars could have also generated coatings, which could have preserved biosignatures. We also identified pigments within these microbial communities and correlated the pigments to community composition. We determined how the reflectance spectra of these communities were influenced by their pigments, demonstrating the capability of distinguishing microbial mat community composition in visible and near-infrared spectroscopy. The results of our study indicate that pigment spectral absorptions can act as remote biosignatures which we then applied to modeling the detection of similar life on the surfaces of cold and rocky Earth-like exoplanets. The detection times of Antarctic microbial mat remote biosignatures were compared with those of anoxygenic photosynthetic and nonphotosynthetic microorganisms, accounting for false positives, to determine which biosignatures were most detectable. The results from this work demonstrate the ability of the future space-based telescope, Habitable Worlds Observatory, to detect surface life on rocky Earth-like exoplanets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer