Content area

Abstract

Space-based gravitational-wave detectors, such as LISA, record interferometric measurements on widely separated satellites. Their clocks are not synced actively. Instead, clock synchronization is performed in on-ground data processing. It relies on measurements of the so-called pseudoranges, which entangle the interspacecraft light travel times with the clock desynchronizations between emitting and receiving spacecraft. For interspacecraft clock synchronization, we need to isolate the differential clock desynchronizations, i.e., disentangle the pseudoranges. This further yields estimates for the interspacecraft light travel times, which are required as delays for the laser frequency noise suppression via time-delay interferometry. Previous studies on pseudorange disentanglement apply various simplifications in the pseudorange modeling and the data simulation. In contrast, this article derives an accurate pseudorange model in the barycentric celestial reference system, complemented by realistic state-of-the-art LISA data simulations. Concerning pseudorange disentanglement, this leads to an a priori under-determined system. We demonstrate how on-ground orbit determinations, as well as onboard transmission and on-ground reception time tags of the telemetry data, can be used to resolve this degeneracy. We introduce an algorithm for pseudorange disentanglement based on a nonstandard Kalman filter specially designed for clock synchronization in systems where pseudorange measurements are conducted in different time frames. This algorithm achieves interspacecraft clock synchronization and light travel time estimation with submeter accuracy, thus fulfilling the requirements of time-delay interferometry.

Details

1009240
Title
Clock synchronization and light-travel-time estimation for space-based gravitational-wave detectors
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Aug 19, 2024
Section
General Relativity and Quantum Cosmology
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-08-20
Milestone dates
2024-08-19 (Submission v1)
Publication history
 
 
   First posting date
20 Aug 2024
ProQuest document ID
3094925780
Document URL
https://www.proquest.com/working-papers/clock-synchronization-light-travel-time/docview/3094925780/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-08-21
Database
ProQuest One Academic