Content area

Abstract

In this paper, we discuss the second-order finite element method (FEM) and finite difference method (FDM) for numerically solving elliptic cross-interface problems characterized by vertical and horizontal straight lines, piecewise constant coefficients, two homogeneous jump conditions, continuous source terms, and Dirichlet boundary conditions. For brevity, we consider a 2D simplified version where the intersection points of the interface lines coincide with grid points in uniform Cartesian grids. Our findings reveal interesting and important results: (1) When the coefficient functions exhibit either high jumps with low-frequency oscillations or low jumps with high-frequency oscillations, the finite element method and finite difference method yield similar numerical solutions. (2) However, when the interface problems involve high-contrast and high-frequency coefficient functions, the numerical solutions obtained from the finite element and finite difference methods differ significantly. Given that the widely studied SPE10 benchmark problem (see https://www.spe.org/web/csp/datasets/set02.htm) typically involves high-contrast and high-frequency permeability due to varying geological layers in porous media, this phenomenon warrants attention. Furthermore, this observation is particularly important for developing multiscale methods, as reference solutions for these methods are usually obtained using the standard second-order finite element method with a fine mesh, and analytical solutions are not available. We provide sufficient details to enable replication of our numerical results, and the implementation is straightforward. This simplicity ensures that readers can easily confirm the validity of our findings.

Details

1009240
Identifier / keyword
Title
Distinct Numerical Solutions for Elliptic Cross-Interface Problems Using Finite Element and Finite Difference Methods
Publication title
arXiv.org; Ithaca
Publication year
2024
Publication date
Nov 1, 2024
Section
Computer Science; Mathematics
Publisher
Cornell University Library, arXiv.org
Source
arXiv.org
Place of publication
Ithaca
Country of publication
United States
University/institution
Cornell University Library arXiv.org
e-ISSN
2331-8422
Source type
Working Paper
Language of publication
English
Document type
Working Paper
Publication history
 
 
Online publication date
2024-11-04
Milestone dates
2024-08-20 (Submission v1); 2024-08-31 (Submission v2); 2024-11-01 (Submission v3)
Publication history
 
 
   First posting date
04 Nov 2024
ProQuest document ID
3095277791
Document URL
https://www.proquest.com/working-papers/distinct-numerical-solutions-elliptic-cross/docview/3095277791/se-2?accountid=208611
Full text outside of ProQuest
Copyright
© 2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Last updated
2024-11-05
Database
ProQuest One Academic